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Abstract—A non-linear vector equilibrium/constitutive differential equation governing an elastica
is dircctly simulated without decomposition. The solution is obtained using repeated applications
of a truncated Taylor's expansion to advance along the elastica. Lacking a vector data type in
Fortran 77, the complex data type is used for direct two-dimensional simulations. Rapid convergence
and good accuracy are observed for sufficiently small increments using single precision. Numerical
results for both nodal and undulating elastica are presented. Good agreement is shown with existing
alternative solutions.

INTRODUCTION

The finite deflection of uniform beams may be obtained using the Euler-Bernoulli law of
bending. The approximate solutions, in serics form, of a uniform, initially straight cantilever,
loaded with a single vertical force at the free end, have been given by Boyd (1924) and by
Gross and Lehr (1938). The exact, closed-form solutions were given by Barten (1944) and
in the elliptic function form by Bisshopp and Drucker (1945). The solution of elastica using
the principle of elastic similarity was developed by Frisch-Fay (1961a, b, 1962a) who applied
it to some cantilever cascs. By integrating the Bernoulli-Euler equation, Frisch-Fay (1962b)
also gave another closed-form solution of a cantilever with two vertical forces. The exact
solution for a straight bar on unyiclding knife-edged supports, without and including
friction was given by Frisch-Fay (1962b). The same problem, without friction, was solved
by Freeman (1946), Wijngaarden (1946), Conway (1947), and Gospodnetic (1959). The
finite deflection of a centrally loaded bar supported by two pivoted end links were obtained
by Gorski (1974). Numerical analysis for such problems has been performed by Scames
and Conway (1957), Wang et al. (1961), Wang (1969), and Yang (1973). Numerous finite
¢lement solutions for such problems are available and a brief account was given by Yang
and Saigal (1984). Saje and Srpcic (1985) recently presented a large deformation beam
theory based on the uniaxiality of the strain tensor.

The solutions presented in the literature mentioned above are complicated by several
substitutions and transformations required which tend to obscure the physical nature of
the problem. The formulations for these solutions are based on equations of equilibrium
written in terms of the individual displacement components. In this paper a straightforward
procedure, for which the equations of equilibrium are both expressed and solved directly
in their vector form, is presented. The position vector for a point on the clastica is expressed
in terms of a Taylor’s series expansion about a neighboring point on the elastica. An
incremental marching procedure is then used to advance along the entirc length of the
elastica. The complex data type capabilities arc used in programming on the computer for
the solution of two-dimensional equilibrium equations directly in their vector form. The
present method is applicable to both nodal and undulating elastica. Numerical examples
are presented and compared with existing alternative results to demonstrate the effectiveness
of the present method. A good convergence of the series for solving large displacement
problems is seen.

+ Author to whom all correspondence should be addressed.
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Fig. . The elastic curve.

THE GOVERNING VECTOR EQUATIONS

For the elastic curve shown in Fig. L, let the distance along the curve 5 be the
independent variable and the position vector R to point P be the dependent variable. The
derivative

lR
R =" 0

ds

is the local unit tangent directed in the positive s-direction. The second derivative R” has
the local curvature (1/p) as its magnitude and is directed towards the local center of
curvature C. The governing equation for the clastica then becomes

R =R x )
= Py 2

where M is the local bending moment at point P, £7 the bending rigidity, and the cross (%)
denotes the vector cross product. It is noted that eqn (2) is independent of the vector
coordinate system. A lncarly elastic material is assumed which, if anisotropic, has a
principal axis coincident with the axis of the clastica. It is also assumed that neither is the
neutral surfuce appreciably warped due to the effects of Poisson’s ratio nor is any cross-
sectional surface appreciably warped due to the etfects of local transverse shear.

The local bending moment can be expressed as a summation of cross products

M=3[(r,—R)xF,~M] &)

where F, and M, arce the force and bending moment, respectively, in any direction acting on
a point on the clastica corresponding to the position vector r;.

SERIES SOLUTION

The solution for the position vector R(s+ As} cun be expressed by using Taylor’s scries
expansion as

R(s+As) = Z R™(s )(A) C))
x [LER]
R'(s+As) = ¥ R'(s )( oL (5)

L l)
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(a)

Fig. 2. An initially straight beam on frictionless knife-edged supports under a central load P.

where As is the incremental distance along the elastic curve, and R"(s) denotes the nth
derivative of R(s) with respect to s and can be obtained by successive differentiation of eqn
(2). The truncation point of eqns (4) and (5) depends on the behavior of the higher order
derivatives. I the expansion are truncated with an inadequatc number of terms, the requisite
mesh size for a desired accuracy becomes so small that it is never accomplished in single
precision due to roundoll crrors. Also, execution time becomes excessive. For all of the
examples presented in this study, truncation of eqns (4) and (5) at n = 6 was found to yicld
adequate accuracy with reasonably short execution times.

SOLUTION PROCEDURE

For all the simulations which can be cast as initial value problems, and all of the
examples which follow can be so treated, the solution procedure begins at s = 0 where
the boundary conditions are known. The method then proceeds in increments As of the
independent variable s along the elastic curve until the entire curve is spanned. Successively
smaller values of As are chosen until the simulation results become: insensitive to further
reductions in As. The end of a curve is identified by the boundary condition at that point.
Shooting methods, which are iterative in nature, are employed to determine the point
satisfying this boundary condition. This procedure is demonstrated in the following sections
for large displacements of ¢lastic beams under various loading and boundary conditions.

A. Straight beam on frictionless unyielding knife-edged supports
Consider a straight beam supported on frictionless knife-edged supports under a central
load as shown in Fig. 2(a). Although the actual length of the beam lying between fixed
supports varies with the deflection curve, the length L is defined as the distance between
the supports. Thus, the length and center deflection, as defined, do not vary simulitaneously.
Substituting eqn (3), for a single force and for r, = 0, into eqn (2), we have

EIR" = (RxF)xR". (6)

The dimensionless parameter is defined as
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and the dimensionless independent variable as

Using these definitions we obtain

dR _do _
ds ~ da

dZR_<F>"2dlo F'”B,,
ds® ~ \El) da  \EI :

Governing eqn (6). using eqns (9) and (10) can be written in dimensionless form as

o

0" = (0xjyx0
with the boundary conditions

00)=0 and 00) =i

where i, j, k arc the unit vectors in the coordinate directions x, p, and z, respectively.

Also, from Fig. 2(b), we have
P =2Fsinn=2FR"i

RxR’
d=Rsinff = — —
sin [ R

since the curve is two-dimensional, and
L=2Rcos i =2R-R’.

Using eqns (7)-(15), we obtain

”

PL* . s
I, = 8(0"-)(0-0)
and
(5_ 1 0x0
L 2R 0-0

(N

(8)

)

(10)

(1

(13)

(14)

(15)

(16)

(17)

The solution procedure starts at x = 0 (corresponding to the origin of Fig. 2(b) which
is at a beam support) with the boundary conditions given by eqn (12). The iterative
solution procceds in increments of Ax using eqn (11) and its derivatives substituted into the
dimensionless forms of eqns (4) and (5). At the end of each iteration, the dimensionless
position vector @ can be interpreted as representing the midpoint focation of a new beam
for which the dimensionless load and deflection are p = PL*/El and §/L, respectively, as
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Fig. 3. Load-deflection curve for centrally loaded beam on frictionless knife-edged supports.

defined in eqns (16) and (17). Thus, each iteration produces a new plotted point for Fig. 3.
This problem was earlier studied by Frisch-Fay (1962a) for nodal elastica and his results
are plotted in Fig. 3 for comparison. A good agreement of results is seen. For the present
study, the solution was further extended. Multiple segments of the load-deflection curve
were obtained for each quadrant and some initial segments are shown in Fig. 4.

Several deflection profiles corresponding to the curve in Fig. 4 are shown in Figs 5-8.
The clastic beam sags under the load acting downward until a self-supporting deflection
profile is obtained corresponding to p = 0. The load is then applied in the reverse (upward)
direction to maintain the beam in equilibrium. As the solution marches further, interfering
deflection profiles are obtained as shown in Fig. 6. These deflection profiles corespond to
the load-deflection segment in the third quadrant. On {urther increasing a, undulating
curves involving inflection points are obtained as shown in Fig. 7. The points corresponding
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Fig. 4. Multiple segments of the load-deflection curve for centrally loaded beam on frictionless
knife-edged supports.
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Fig. 5. Deflection profiles for p = 6. 0, and —0.85, respectively.
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Fig. 6. Deflection profiles for p = ~0.564 and —0.143, respectively.

to p = 6.69 and 29.05 lic in the second quadrant while the point for p = 4.34 lics on the
next scgment in the third quadrant. These load values signify the load that must be applied
to maintain the beam in equilibrium if the beam is deflected in the shape of the deflection
profiles shown in Fig. 7. Finally deflection profiles corresponding to a segment in the fourth
quadrant of Fig. 4 are shown in Fig. 8. The elastic curves obtained are interfering undulating

elastica.

B. Cantilever beam with normal force at free end

This situation is identical to Case A above with the addition of a coordinate trans-
formation and a redefinition of some of the parameters (sce inset on Fig. 9). The midbeam
point and the local normal for Case A become the “wall” for this case, the old load F
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Fig. 7. Deflection profiles in the third quadrant for p = 6.69, 29.05, and 4.34, respectively.
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Fig. 8. Deflection profiles in the fourth quadrant for p = 9.71 and 13.54, respectively.

becomes the new load P and the new L is the actual beam length obtained by integrating
along the beam during the iteration process. The initial conditions are the same, and, as
before, each iteration yields dimensionless data which can be interpreted as decribing the
behavior of either a new beam or the same beam under different loading conditions.

Note the following equivalences: cither of the curves in Fig. 6 is approximately equi-
valent to the curve for load p, in Fig. 10; the curves for loads p, and p; in Fig. 7 are
approximately cquivalent to the curves for loads p, and p,, respectively, in Fig. 10. This
problem has been studied earlicr by Saje and Srpcic (1985) and their solutions are also
plotted in Figs 9 and 10 for comparison. A good agreement in results is scen.

C. Cantilever beam with moment at free end

This case is included to provide a simple test of the iteration error which necessarily
accumulates during the simulation process. Governing eqn (2) is simplified by the condition
that the bending moment is constant.
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Fig. 9. Load-deflection curve for cantilever beam with normal force at free end.



208 S. SaIGAL and W. A. KisTLER
BOr

60+

- SAJE & SRPCIC (1985)
© THIS STUDY

40k

20+

=20

~40k

~-60 ¥ ¥ T T T
-20 Q 20 40 60 80

Fig. 10. Deflection profiles for cantilever beam with normal force at free end.

The following transformations are introduced

0="-
gt (18)
o == M- 19
- [11‘ ( )

where 2 is the dimensionless independent variable that is incremented in steps to obtain the
solution. The governing equation is then written in dimensionless form as

& =kxO (20)

where k, as before, is the unit vector in the z-direction.

As a test the simulation was iterated for an entire circle and the discrepancy between
the initial point and the final point was investigated. The resulting relative error was defined
as the absolute discrepuncy divided by the integrated circumference along the circle which,
itself. was checked against the theoretical circle diameter.

The most convenient boundary conditions are those for Cases A and B

H0)=0 and 00 =1

The results are shown in Table |, Note that carrying three derivative orders in the simulation
yiclds a relative accuracy of approximately four significant figures, whereas, when five
derivative orders are carried, the machine error in single precision completely masks the
simulation error.

D. Cantilever beam with vertical force at free end
A cantilever beam with a concentrated vertical force at its free end is considered next,

From Fig. 11
M= -M,—RxF, (2

and the elastic beam equation can be written as
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Table 1. Cantilever with moment at free end

é
z Simulated Exact Simulation
(deg) 8, 8, 8, 8, error
Case [:N=60.M=3L=3
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
18.000 0.30901 0.48958E —-01 0.30902 0.48943E—-01  0.15029E—-04
36.000 0.58777 0.19101 0.58779 0.19098 0.30046E — 04
54.000 0.80898 0.41224 0.80902 0.41221 0.45094E - 04
72.000 0.95100 0.69101 0.95106 0.69098 0.60164E—-04
90.000 0.99993 1.0000 1.0000 1.0000 0.75179E-04
{08.00 0.95097 1.3090 0.95106 1.3090 0.90215E-04
126.00 0.80893 1.5877 0.80902 1.5878 0.10527E-03
144.00 0.58771 1.8089 0.58779 1.8090 0.12033E-03
162.00 0.30896 1.9509 0.30902 1.9511 0.13541E-03
180.00 ~0.22626E—04 1.9999 - (1.32584E — 06 2.0000 0.15047E—-03
198.00 -0.30898 1.9509 -0.30902 1.9511 0.16550E—-03
216.00 -0.58769 1.8089 -~(.58779 1.8090 0.180S8E—-03
23400 —0.80887 1.5877 -0.80902 1.5878 0.19550E-03
252.00 —0.95086 1.3089 -0.95106 1.3090 0.21044E-03
270.00 —0.99978 0.99998 - 1.0000 1.0000 0.22544E-03
288.00 —{1.95082 0.69104 -0.95106 0.69098 0.24045E—-03
306.00 —0.80880 0.41235 -{).80902 0.41221 0.25547E-03
324.00 -0.58761 0.19(19 -(,58778 0.19098 0.27043E-03
342.00 -(.30891 0.49207E -0l -0,30902 0.48943E—-01  0.28541E-03
360.00 0.25168E—04 0.29949E - 03 0.16054E - 05 0.12886E—1{1 0.30041E-03
max -3
c = 4.78 x 10
Case IlN=60 M =3 L=5
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
18.000 0.30002 Q.48943E - 01 0.30902 048943E—-0!  0.74506E—-08
36.000 0.58779 0.19098 0.58779 0.19098 0.00000
54.000 0.80902 0.41221 0.80902 0.41221 0.59605E~07
72.000 0.95106 0.69098 0.95106 0.69098 0.00000
90.000 10000 1.0000 1.0000 1.0000 0.11921E-06
108.00 0.95106 1.3090 0.95106 1.3090 0.59605E - 07
126.00 0.80902 1.5878 0.80902 1.5878 0.13328E - 06
144.00 0.58779 1.8090 0.58779 1.8090 0.5960SE - 07
162.00 0.30902 1.9511 0.30902 1.9511 0.14901E-06
180.00 - 0.82275E 07 2.0000 - {.32584E-06 2.0000 0.24357TE-06
198.00 -0.30902 1.9511 -0.30902 1.9511 0.29802E - 06
216.00 -0.58779 1.809%0 -0.58779 1.8090 0.32098E - 06
234.00 -().80902 1.5878 -(0,80902 1.5878 0.50926E —- 06
252,00 -0.95106 1.3090 -0.95106 1.3090 0.59605E - 06
270.00 - 1.0000 1,0000 - 1.0000 1.0000 0.69765E — 06
288.00 —0.95106 0.69098 -0.95106 0.69098 0.84714E—-06
306.00 -0.80902 0.41221 -.80902 0.41221 0.94243E—-06
324.00 - 0.58779 0.19098 -0.58778 0.19098 0.11309E-05
342.00 -0,30902 0.48943E ~ 01 - ,30902 0.48943E—-01  O.13114E-05
360.00 0.16765E-06 —0.40461E—06 0.16054E - 05 0.12886E—11  0.14936E - 05
Omax -
¢ 2.38x 10
N = No. of iterations in full circle.
M = No. of iterations per output.
L = No. of derivative orders taken,
EIR" =MxR’
= —R’x(Mo+R xFy). (22)

The non-dimensional parameters are

and

12
= (R}’
Ef

Fo 12
o= (@)
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Fig. 1. Load -deflection curve for cantilever beam with vertical force at free end.

M,

= (FEN' 23

f

where 2 is the dimensionless independent variable. Equilibrium eqn (22) can then be written

as

0" = (PR+0xj)x 0

with the boundary conditions
H0)=0 and O0) =i

The non-dimensional deflection and load values are obtained as

o _ 0]

L Ay
and

FL®*

BT

where 8; and d; are the values of 8 und § at the free end.
For a given value of #§ and selected values for Ax and tolerance &, the marching procedure
starts with the boundary conditions at « = 0 until the following condition corresponding

to the free end is satisfied :
0'x0" =0. (24)
The a value corresponding to this condition was found using an iterative secant search

root-finding procedure. In the present two-dimensional analysis, the quantity (0'x8") is a
scalar and, thus, the condition given by cqn (24) simplifies the root-finding procedure. The
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condition, 8" = 0, is, however, a sufficient criterion. The load—deflection curves for both
horizontal and vertical deflections are shown in Fig. 11. The elliptical integral solution due
to Bisshopp and Drucker (1945) is also plotted in Fig. 11 for comparison and a good
agreement is seen.

CONCLUSIONS

A straightforward numerical procedure for finite deflections of deep elastic beams is
presented. The formulation involves writing the equilibrium equations in vector notation.
These equations are then solved directly in their vector form without the need to decompose
them into their individual component scalar equations. The solution is expressed as a
Taylor's series expansion about a known point. The solution procedure is an incremental
marching scheme which starts from the known boundary conditions and proceeds along
the elastic curve using the series expansion. Numerical results are obtained for an elastic
beam on knife-edged fixed supports; and for a cantilever under a normal force, a moment,
and a vertical force, respectively, at its free ends. The results obtained are in good agreement
with existing alternative solutions which demonstrates the accuracy of the present work.
This procedure is especially attractive due to its simplicity. It does not involve numerous
substitutions and transformations which have, in earlier solutions, masked the physical
nature of the problem. A three-dimensional analysis of elastica should prove to be no more
difficult than it is in two dimensions using the current scheme. The coding using Fortran,
however, will be more complicated duce to the lack of a vector data type.
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